Parameters that Control Misting During Printing

- Doug Bousfield, Professor
- Paper Surface Science Program
- Department of Chemical and Biological Engineering
 - University of Maine
 - bousfld@maine.edu
Motivation

- Misting often limits processing speeds and causes environmental issues.
- A number of parameters influence the results such as speed, rheology, and substrate.
- Still not well understood.
Phenomenological Facts about Misting

- Misting increases as
 - Temperature increases
 - Humidity decreases / electrostatic fields increase
 - Ink film thickness increases
 - Roller speed increases, misting = k (speed)^n
 - Air Entrainment increases

Misting Mechanisms

- Mist Formation
 - Film-Split
 - Film-Split + Air-Entrainment

- Sling Formation

![Diagram showing ink, misting, nip center, peak height, valley depth/tack value, pressure, time, and deformation types such as extensional and shear.]
Objective and Background

• fill the gap between the industrial press misting performance and the rheological characterization of inks
 – Misting data at similar conditions to commercial presses
 – Visual performance / misting data
• Results for 6 inks are provided in this presentation.

<table>
<thead>
<tr>
<th>Ink ID</th>
<th>Viscosity (Pa.s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>13.6</td>
</tr>
<tr>
<td>B</td>
<td>59.3</td>
</tr>
<tr>
<td>C</td>
<td>11.8</td>
</tr>
<tr>
<td>D</td>
<td>41.5</td>
</tr>
<tr>
<td>E</td>
<td>8.7</td>
</tr>
<tr>
<td>F</td>
<td>7.8</td>
</tr>
</tbody>
</table>
Pressure Profiles and Visual Representations

- Pressure pulse for ink A with roll speeds of 1 and 1 m/s. Different series are the same ink but repeated passes through the nip.

Gap held between rolls
To around 100 mm

FIXED GAP RESULTS

- Surface of roll corresponding to the above pressure profiles.
Dimensionless Groups: Definition

- Misting No., Nm

 $N_m = \frac{M_m}{2\pi RN_{Rev} \rho Wh}$

- Pressure No. $N_{\Delta P}$

 $N_{\Delta P} = \frac{(h/D)\Delta P}{\frac{1}{2} \rho U^2}$

- Reynolds No., Re

 $Re = \frac{\text{inertial force}}{\text{viscous force}} = \frac{\rho h U}{\eta}$

- Weber No., We

 $We = \frac{\text{centrifugal force}}{\text{surface force}} = \frac{\rho U^2 h}{\sigma}$

Note, this misting number is different than what Olsen’s thesis suggests.
Misting No. vs. Reynolds No.

- Mist number as a function of Reynolds number. The data is for six inks at three different speeds.
Impact of Centrifugal Forces on Misting Generation

• Criteria for a fluid surface to sling out droplets
 – To grow fluid surface defects, a modification of the analysis of Roper et al. (1997)

\[We > \left(\frac{2\pi L}{\lambda} \right) \text{ where } L = (Rh)^{1/2} \]

- To breakup the filament from the coated fluid (sling) before the filament rotates a complete cycle and meet the nip again. So the time for the filament to break needs to be shorter than the following

\[t_{\text{filament-break-to-sling}} < \frac{2\pi R}{U} \]
Lubrication analysis

Accounts for surface tension, centrifugal forces, geometry, and viscosity.

Axisymmetric around $r=0$

Particle differential equation for h that is solved with finite difference methods
Growth of a Disturbance into a Filament

- Growth of a disturbance into a filament for a film thickness of 100 µm, a speed of 10 m/s, viscosity of 1 Pas, an initial disturbance of 50 µm, a surface tension of 30 mN/m, and roll radius of 0.1 m for a total elapsed time of 60 ms.
Impact of Initial Disturbance Size

- The difference in height between the highest and lowest points of the film for conditions above but for different initial disturbances.
- Large initial disturbance is needed to generate a spout in the time available.
Growth often too slow to generate drops.

Key finding – growth is slow if starting from small disturbance, but large if it starts from a filament remain.
Mechanism

- When do we break at one point and when two points?
Problem setup
A few issues

- How to move mesh.
- Boundary condition at surfaces.
- Initial velocity conditions.
- Initial radius or filament shape.
Thin filament or Cosserat equations

- Mass and momentum equation averaged in radial direction.

\[
\left(\frac{\partial v}{\partial t} \right) = - \frac{\nu}{R^2} \frac{\partial v}{\partial z} + \left[\frac{\partial}{\partial z} \left(R^2 P \right) + 2 \left(\frac{1}{R \left(1 + \frac{\partial R}{\partial z} \right)^{1/2}} + \frac{\partial^2 R}{\partial z^2} \left(\frac{1}{1 + \left(\frac{\partial R}{\partial z} \right)^{3/2}} \right) \right) \frac{\partial R}{\partial z} + 2 \frac{\partial}{\partial z} \left(R^2 \frac{\partial v}{\partial z} \right) \right] \frac{1}{bR^2}
\]

\[P = \frac{\partial v}{\partial z} - \left(\frac{1}{R \left(1 + \frac{\partial R}{\partial z} \right)^{1/2}} - \frac{\partial^2 R}{\partial z^2} \left(\frac{1}{1 + \left(\frac{\partial R}{\partial z} \right)^{3/2}} \right) \right) \]

For a Newtonian fluid.
Other rheology not hard.
Other rheology

\[\rho R^2 \left(\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial z} \right) = \frac{\partial}{\partial z} \left(R^2 T_{zz} \right) + 2\sigma \left\{ \frac{1}{R \left(1 + \frac{\partial R^2}{\partial z} \right)^{1/2}} + \frac{\partial^2 R}{\partial z^2} \left(1 + \frac{\partial R^2}{\partial z} \right)^{3/2} \right\} R \frac{\partial R}{\partial z} \]

Axial stress. Term.
Work in dimensionless quantities.

- R (filament radius), L(initial length), U(velocity of roll surface normal), \(\mu, \rho, \sigma \) (fluid properties). Three units. Leads to three dimensionless groups that control.

- In the real case, the filament stretching starts at zero and increases linearly as \(A=U_w^2/R_r \) web speed and roll radius.
Quantities

- $r^* = \frac{R}{R_o}$ filament radius
- $z^* = \frac{L}{R_o}$ filament length
- $u^* = \frac{U\mu}{\sigma}$ velocity
- $t^* = \frac{t}{\sigma R_o}$ time
- $Oh = \mu / (R_o \sigma \rho)^{1/2}$
- $A^* = \frac{A \mu^2 R_o}{\sigma^2}$ where A is the rate of increase.
- Velocity at end increases then as $A^* t$
- 3 parameters z^*, A^*, Oh
Key results

Initial length did not influence if it was less than the unstable wavelength $L < pR$

As Oh increases, filaments generated are thin and have a chance to break at one point.

As speed increases, much more fluid left in the middle.

Pulling from one end, instead of from both, promotes breakup at one point.
Oh = 10 A* = 0.1
$O_h = 1 \ A = 1$
Oh = 1 A = 0.1
Oh = 10 A = 0.1
Other cases

- **Oh = 100 A = 0.1**

- **Oh = 10 A = 0.01**
Pulling one boundary causes single point breakup

Oh = 1 A = 0.1

Fluid

James, 2009
Oh = 0.006
Oh = 10 A = .1

Only pulled to the right
James, Oh = 0.13
Breaking lengths

![Graph showing breaking lengths](image)

- **James et al. Newtonian**
- **Filament model**

The graph plots $\ln(Lb/Lo)$ against Oh, with data points marking the transition from one model to the other as Oh increases.
Results agree with experiments

- High viscosity leads to thin filaments and longer breaking lengths. **Oh controls.**

- Increase speed leads to more fluid being left in drop --- relates to more misting in experiments. **Small A* reduces misting.**

- Initial thickness scales problem, but not the onset of misting. (nip loads in experiments).
Practical implications

- The only parameter that is reasonable to control is ink rheology. High viscosity inks linked with less misting. We still do not understand viscoelasticity of inks on misting.
- Control of the filament forming stage is important. Can additives me included to generate smaller scale filaments?
Acknowledgements

The authors would like to thank the industrial sponsors of The Paper Surface Science Program at The University of Maine. We also thank the University Pulp and Paper Foundation for support.

Armstrong World
BASF
Goss International
IMERYS
OMNOVA Solutions
Stora-Enso

- International Paper
- MWV
- SAPPI Fine Paper NA
- SCA
- Specialty Minerals Inc.

Part of this work was in cooperating with Sun Chemical
Thank you for your attention